Jumat, 30 Mei 2014

Turning Dasar


TEORI MESIN BUBUT (TURNING) DASAR

MENGENAL PROSES BUBUT

(TURNING)

Proses bubut adalah proses pemesinan untuk menghasilkan bagian-bagian mesin berbentuk silindris yang dikerjakan dengan menggunakan mesin bubut. Prinsip dasarnya dapat didefinisikan sebagai proses pemesinan permukaan luar benda silindris atau bubut rata:

• Dengan benda kerja yang berputar

• Dengan satu pahat bermata potong tunggal (with a single-point cutting tool)

• Dengan gerakan pahat sejajar terhadap sumbu benda kerja pada jarak tertentu sehingga akan membuang permukaan luar benda kerja

Proses bubut permukaan adalah proses bubut yang identik dengan proses bubut rata, tetapi arah gerakan pemakanan tegak lurus terhadap sumbu benda kerja. Proses bubut tirus ) sebenarnya identik dengan proses bubut rata di atas, hanya jalannya pahat membentuk sudut tertentu terhadap sumbu benda kerja. Demikian juga proses bubut kontur, dilakukan dengan cara memvariasi kedalaman potong, sehingga menghasilkan bentuk yang diinginkan. Walaupun proses bubut secara khusus menggunakan pahat bermata potong tunggal, tetapi proses bubut bermata potong jamak tetap termasuk proses bubut juga, karena pada dasarnya setiap pahat bekerja sendiri-sendiri. Selain itu proses pengaturan (setting) pahatnya tetap dilakukan satu persatu.


A. Parameter yang Dapat Diatur pada Mesin Bubut

Tiga parameter utama pada setiap proses bubut adalah kecepatan putar spindel (speed), gerak makan (feed), dan kedalaman potong (depth of cut). Faktor yang lain seperti bahan benda kerja dan jenis pahat sebenarnya juga memiliki pengaruh yang cukup besar, tetapi tiga parameter di atas adalah bagian yang bisa diatur oleh operator langsung pada mesin bubut. Kecepatan putar, n (speed), selalu dihubungkan dengan sumbu utama (spindel) dan benda kerja. Kecepatan putar dinotasikan sebagai putaran per menit (rotations per minute, rpm). Akan tetapi yang diutamakan dalam proses bubut adalah kecepatan potong (cutting speed atau v) atau kecepatan benda kerja dilalui oleh pahat/keliling benda kerja. Secara sederhana kecepatan potong dapat digambarkan sebagai keliling benda kerja dikalikan dengan kecepatan putar atau:


v = p.d.n /1.000


Di mana:

p = 3,14

v = kecepatan potong (m/menit)

d = diameter benda kerja (mm)

n = putaran benda kerja (putaran/menit)


Dengan demikian kecepatan potong ditentukan oleh diameter benda kerja. Selain kecepatan potong ditentukan oleh diameter benda kerja, faktor bahan benda kerja, dan bahan pahat sangat menentukan harga kecepatan potong. Pada dasarnya pada waktu proses bubut kecepatan potong ditentukan berdasarkan bahan benda kerja dan pahat. Harga kecepatan potong sudah tertentu, misalnya untuk benda kerja mild steel dengan pahat dari HSS, kecepatan potongnya antara 20 sampai 30 m/menit. Gerak makan, f (feed), adalah jarak yang ditempuh oleh pahat setiap benda kerja berputar satu kali (Gambar .4), sehingga satuan f adalah mm/putaran. Gerak makan ditentukan berdasarkan kekuatan mesin, material benda kerja, material pahat, bentuk pahat, dan terutama kehalusan permukaan yang diinginkan. Gerak makan biasanya ditentukan dalam hubungannya dengan kedalaman potong (a). Gerak makan tersebut berharga sekitar 1/3 sampai 1/20 (a), atau sesuai dengan kehalusan permukaan yang dikehendaki. Kedalaman potong a (depth of cut), adalah tebal bagian benda kerja yang dibuang dari benda kerja, atau jarak antara permukaan yang dipotong terhadap permukaan yang belum terpotong (lihat Gambar .4). Ketika pahat memotong sedalam a, maka diameter benda kerja akan berkurang 2a, karena bagian permukaan benda kerja yang dipotong ada di dua sisi, akibat dari benda kerja yang berputar.


Beberapa proses pemesinan selain proses bubut pada Gambar .1, pada mesin bubut dapat juga dilakukan proses pemesinan yang lain, yaitu bubut dalam (internal turning), proses pembuatan lubang dengan mata bor (drilling), proses memperbesar lubang (boring), pembuatan ulir (thread cutting), dan pembuatan alur (grooving/partingoff).

Proses tersebut dilakukan di mesin bubut dengan bantuan/tambahan peralatan lain agar proses pemesinan bisa dilakukan.

B. Geometri Pahat Bubut

Geometri/bentuk pahat bubut terutama tergantung pada material benda kerja dan material pahat. Terminologi standar ditunjukkan pada Gambar .6. Untuk pahat bubut bermata potong tunggal, sudut pahat yang paling pokok adalah sudut beram (rake angle), sudut bebas (clearance angle), dan sudut sisi potong (cutting edge angle). Sudut-sudut pahat HSS dibentuk dengan cara diasah menggunakan mesin gerinda pahat (Tool Grinder Machine). Sedangkan bila pahat tersebut adalah pahat sisipan (insert) yang dipasang pada tempat pahatnya, geometri pahat dapat dilihat pada Gambar .7. Selain geometri pahat tersebut pahat bubut bisa juga diidentifikasikan berdasarkan letak sisi potong (cutting edge) yaitu pahat tangan kanan (Right-hand tools) dan pahat tangan kiri (Left-hand tools).



Proses pemesinan yang dapat dilakukan pada mesin bubut

(a) pembubutan pinggul (chamfering),

(b) pembubutan alur (parting-off),

(c) pembubutan ulir (threading),

(d) pembubutan lubang (boring),

(e) pembuatan lubang (drilling), dan

(f) pembuatan kartel (knurling)





Gambar .6 Geometri pahat bubut HSS (pahat diasah dengan mesin gerinda pahat)



Gambar .7 Geometri pahat bubut sisipan (insert)


Pahat bubut di atas apabila digunakan untuk proses membubut biasanya dipasang pada pemegang pahat (tool holder). Pemegang pahat tersebut digunakan untuk memegang pahat dari HSS dengan ujung pahat diusahakan sependek mungkin agar tidak terjadi getaran pada waktu digunakan untuk membubut (lihat Gambar .9). Untuk pahat yang berbentuk sisipan (inserts), pahat tersebut dipasang pada tempat pahat yang sesuai, (lihat Gambar 10).


Gambar.9 Pemegang pahat HSS: (a) pahat alur, (b) pahat dalam, (c) pahat rata kanan, (d) pahat rata kiri),

dan (e) pahat ulir


Gambar .8 Pahat tangan kanan dan pahat tangan kiri


Gambar .11 Gambar skematis proses bubut

Bentuk dan pengkodean pahat sisipan serta pemegang pahatnya sudah distandarkan oleh ISO. Standar ISO untuk pahat sisipan dapat dilihat pada Lampiran, dan pengkodean pemegang pahat dapat dilihat juga pada Lampiran.


C. Perencanaan dan Perhitungan Proses Bubut

Elemen dasar proses bubut dapat dihitung/dianalisis menggunakan rumus-rumus dan Gambar .11 berikut.


Gambar .10 Pahat bubut sisipan (inserts), dan pahat sisipan yang dipasang pada pemegang pahat (tool holders)


Keterangan:

Benda Kerja:

d0 = diameter mula (mm)

dm = diameter akhir (mm)

lt = panjang pemotongan (mm)

Pahat:

Xr = sudut potong utama/sudut masuk

mesin bubut:

a = kedalaman potong (mm)

f = gerak makan (mm/putaran)

n = putaran poros utama (putaran/menit)

1) Kecepatan potong :

v = p.d.n/1.000 ; m/menit

d = diameter rata-rata benda kerja ((d0 + dm)/2)(mm)

n = putaran poros utama (put/menit)

p?= 3,14

2) Kecepatan makan

vf = f n; m/menit

3) Waktu pemotongan

4) Kecepatan penghasilan beram

Z = A v; cm3/menit

tc = t

f

I

v ; menit

di mana: A = a • f mm2

Perencanaan proses bubut tidak hanya menghitung elemen dasar proses bubut, tetapi juga meliputi penentuan/pemilihan material pahat berdasarkan material benda kerja, pemilihan mesin, penentuan cara pencekaman, penentuan langkah kerja/langkah penyayatan dari awal benda kerja sampai terbentuk benda kerja jadi, penentuan cara pengukuran dan alat ukur yang digunakan.


Gambar .12 (a) Kekerasan dari beberapa macam material pahat sebagai fungsi dari temperatur, (b) jangkauan sifat material pahat


1. Material Pahat

Pahat yang baik harus memiliki sifat-sifat tertentu, sehingga nantinya dapat menghasilkan produk yang berkualitas baik (ukuran tepat) dan ekonomis (waktu yang diperlukan pendek). Kekerasan dan kekuatan pahat harus tetap bertahan meskipun pada temperatur tinggi, sifat ini dinamakan hot hardness. Ketangguhan (toughness) dari pahat diperlukan, sehingga pahat tidak akan pecah atau retak terutama pada saat melakukan pemotongan dengan beban kejut. Ketahanan aus sangat dibutuhkan yaitu ketahanan pahat melakukan pemotongan tanpa terjadi keausan yang cepat.

Penentuan material pahat didasarkan pada jenis material benda kerja dan kondisi pemotongan (pengasaran, adanya beban kejut, penghalusan). Material pahat yang ada ialah baja karbon sampai dengan keramik dan intan. Sifat hot hardness dari beberapa material pahat ditunjukkan pada Gambar .12. Material pahat dari baja karbon (baja dengan kandungan karbon 1,05%) pada saat ini sudah jarang digunakan untuk proses pemesinan, karena bahan ini tidak tahan panas (melunak pada suhu 300-500° F). Baja karbon ini sekarang hanya digunakan untuk kikir, bilah gergaji, dan pahat tangan. Material pahat dari HSS (high speed steel) dapat dipilih jenis M atau T. Jenis M berarti pahat HSS yang mengandung unsur molibdenum, dan jenis T berarti pahat HSS yang mengandung unsur tungsten. Beberapa jenis HSS dapat dilihat pada Tabel 6.1.


Tabel .1 Jenis Pahat HSS

Jenis HSS Standart AISI

HSS Konvensional

• Molibdenum HSS M1, M2, M7, M10

• Tungsten HSS T1, T2

HSS Spesial

• Cobald added HSS M33, M36, T4, T5, T6

• High Vanadium HSS M3-1, M3-2, M4, T15

• High Hardness Co HSS M41, M42, M43, M44, M45, M46

• Cast HSS

• Powdered HSS

• Coated HSS

Pahat dari HSS biasanya dipilih jika pada proses pemesinan sering terjadi beban kejut, atau proses pemesinan yang sering dilakukan interupsi (terputus-putus). Hal tersebut misalnya membubut benda segi empat menjadi silinder, membubut bahan benda kerja hasil proses penuangan, dan membubut eksentris (proses pengasarannya).

Pahat dari karbida dibagi dalam dua kelompok tergantung penggunaannya. Bila digunakan untuk benda kerja besi tuang yang tidak liat dinamakan cast iron cutting grade . Pahat jenis ini diberi kode huruf K (atau C1 sampai C4) dan kode warna merah. Apabila digunakan untuk menyayat baja yang liat dinamakan steel cutting grade. Pahat jenis ini diberi kode huruf P (atau C5 sampai C8) dan kode warna biru. Selain kedua jenis tersebut ada pahat karbida yang diberi kode huruf M, dan kode warna kuning. Pahat karbida ini digunakan untuk menyayat berbagai jenis baja, besi tuang, dan nonferro yang mempunyai sifat mampu mesin yang baik. Contoh pahat karbida untuk menyayat berbagai bahan dapat dilihat pada Tabel .2.


Tabel .2 Contoh Penggolongan Pahat Jenis Karbida dan Penggunaannya


2. Pemilihan Mesin

Pertimbangan pemilihan mesin pada proses bubut adalah berdasarkan dimensi benda kerja yang yang akan dikerjakan. Ketika memilih mesin perlu dipertimbangkan kapasitas kerja mesin yang meliputi diameter maksimal benda kerja yang bisa dikerjakan oleh mesin, dan panjang benda kerja yang bisa dikerjakan. Ukuran mesin bubut diketahui dari diameter benda kerja maksimal yang bisa dikerjakan (swing over the bed) dan panjang meja mesin bubut (length of the bed). Panjang meja mesin bubut diukur jarak dari headstock sampai ujung meja. Sedangkan panjang maksimal benda kerja adalah panjang meja dikurangi jarak yang digunakan kepala tetap dan kepala lepas.

Beberapa jenis mesin bubut manual dengan satu pahat sampai dengan mesin bubut CNC dapat dipilih untuk proses pemesinan (lihat Lampiran 1). Pemilihan mesin bubut yang digunakan untuk proses pemesinan bisa juga dilakukan dengan cara memilih mesin yang ada di bengkel (workshop). Dengan pertimbangan awal diameter maksimal benda kerja yang bisa dikerjakan oleh mesin yang ada.


3. Pencekaman Benda Kerja

Setelah langkah pemilihan mesin tersebut di atas, dipilih juga alat dan cara pencekaman/pemasangan benda kerja. Pencekaman/pemegangan benda kerja pada mesin bubut bisa digunakan beberapa cara. Cara yang pertama adalah benda kerja tidak dicekam, tetapi menggunakan dua senter dan pembawa. Dalam hal ini, benda kerja harus ada lubang senternya di kedua sisi benda kerja, (lihatGambar .13).


Gambar .13 Benda kerja dipasang di antara dua senter


Cara kedua yaitu dengan menggunakan alat pencekam (Gambar .14). Alat pencekam

yang bisa digunakan sebagai berikut.

a. Collet, digunakan untuk mencekam benda kerja berbentuk silindris dengan ukuran sesuai diameter collet. Pencekaman dengan cara ini tidak akan meninggalkan bekas pada permukaan benda kerja.

b. Cekam rahang empat (untuk benda kerja tidak silindris). Alat pencekam ini masing-masing rahangnya bisa diatur sendiri-sendiri, sehingga mudah dalam mencekam benda kerja yang tidak silindris.

c. Cekam rahang tiga (untuk benda silindris). Alat pencekam ini tiga buah rahangnya bergerak bersama-sama menuju sumbu cekam apabila salah satu rahangnya digerakkan.

d. Face plate, digunakan untuk menjepit benda kerja pada suatu permukaan plat dengan baut pengikat yang dipasang pada alur T.

Pemilihan cara pencekaman tersebut di atas, sangat menentukan hasil proses bubut. Pemilihan alat pencekam yang tepat akan menghasilkan produk yang sesuai dengan kualitas geometris yang dituntut oleh gambar kerja. Misalnya apabila memilih cekam rahang tiga untuk mencekam benda kerja silindris yang relatif panjang, hendaknya digunakan juga senter jalan yang dipasang pada kepala lepas, agar benda kerja tidak tertekan, (lihat Gambar .15). Penggunaan cekam rahang tiga atau cekam rahang empat, apabila kurang hati-hati akan menyebabkan permukaan benda kerja terluka. Hal tersebut terjadi misalnya pada waktu proses bubut dengan kedalaman potong yang besar, karena gaya pencekaman tidak mampu menahan beban yang tinggi, sehingga benda kerja tergelincir atau selip. Hal ini perlu diperhatikan terutama pada proses finishing, proses pemotongan ulir, dan proses pembuatan alur.



Gambar .14 Alat pencekam/ pemegang benda kerja proses bubut


Beberapa contoh proses bubut, dengan cara pencekaman yang berbeda-beda dapat dilihat pada Gambar .16.


4. Penentuan Langkah Kerja

Langkah kerja dalam proses bubut meliputi persiapan bahan benda kerja, setting mesin, pemasangan pahat, penentuan jenis pemotongan (bubut lurus, permukaan, profil, alur, ulir), penentuan kondisi pemotongan, perhitungan waktu pemotongan, dan pemeriksaan hasil berdasarkan gambar kerja. Hal tersebut dikerjakan untuk setiap tahap (jenis pahat tertentu).


Gambar .15 Benda kerja yang relatif panjang dipegang oleh cekam rahang tiga dan didukung oleh senter putar


Gambar .16 Beberapa contoh proses bubut dengan cara pencekaman/pemegangan benda kerja yang berbeda-beda



Bahan benda kerja yang dipilih biasanya sudah ditentukan pada gambar kerja baik material maupun dimensi awal benda kerja. Penyiapan (setting) mesin dilakukan dengan cara memeriksa semua eretan mesin, putaran spindel, posisi kepala lepas, alat pencekam benda kerja, pemegangan pahat, dan posisi kepala lepas. Usahakan posisi sumbu kerja kepala tetap (spindel) dengan kepala lepas pada satu garis untuk pembubutan lurus, sehingga hasil pembubutan tidak tirus. Pemasangan pahat dilakukan dengan cara menjepit pahat pada rumah pahat (tool post). Usahakan bagian pahat yang menonjol tidak terlalu panjang, supaya tidak terjadi getaran pada pahat ketika proses pemotongan dilakukan. Posisi ujung pahat harus pada sumbu kerja mesin bubut, atau pada sumbu benda kerja yang dikerjakan. Posisi ujung pahat yang terlalu rendah tidak direkomendasi, karena menyebabkan benda kerja terangkat, dan proses pemotongan tidak efektif, (lihat Gambar .17).

Pahat bubut bisa dipasang pada tempat pahat tunggal, atau pada tempat pahat yang berisi empat buah pahat (quick change indexing square turret). Apabila pengerjaan pembubutan hanya memerlukan satu macam pahat lebih baik digunakan tempat pahat tunggal. Apabila pahat yang digunakan dalam proses pemesinan lebih dari satu, misalnya pahat rata, pahat alur, pahat ulir, maka sebaiknya digunakan tempat pahat yang bisa dipasang sampai empat pahat. Pengaturannya sekaligus sebelum proses pembubutan, sehingga proses penggantian pahat bisa dilakukan dengan cepat (quick change).


Gambar .17 Pemasangan pahat


5. Perencanaan Proses Membubut Lurus

Proses membubut lurus adalah menyayat benda kerja dengan gerak pahat sejajar dengan sumbu benda kerja. Perencanaan proses penyayatan benda kerja dilakukan dengan cara menentukan arah gerakan pahat, kemudian menghitung elemen dasar proses bubut sesuai dengan rumus 6.2. sampai dengan rumus 6.5. Contoh: Akan dibuat benda kerja dari bahan mild steel (ST. 37) seperti Gambar .19 berikut.


Gambar .18 Tempat pahat (tool post) : (a) untuk pahat tunggal, (b) untuk empat pahat


Gambar .19 Gambar benda kerja yang akan dibuat


Perencanaan proses bubut:

a. Material benda kerja: mild steel (ST. 37), dia. 34 mm × 75 mm

b. Material pahat : HSS atau Pahat Karbida jenis P10, pahat kanan.

Dengan geometri pahat dan kondisi pemotongan dipilih dari Tabel 6.3. (Tabel yang direkomendasikan oleh produsen mesin bubut):

• ??= 8°, ??= 14°, v = 34 m/menit (HSS)

• ??= 5°, ??= 0°, v = 170 m/menit (Pahat karbida sisipan)

c. Mesin yang digunakan: mesin bubut dengan kapasitas diameter lebih dari

1 inchi.

d. Pencekam benda kerja: Cekam rahang tiga.

e. Benda kerja dikerjakan Bagian I terlebih dulu, kemudian dibalik untuk

mengerjakan Bagian II (Gambar .20).

Tabel .3 Penetuan Jenis Pahat, Geometri Pahat, v, dan f (EMCO)


f. Pemasangan pahat: Menggunakan tempat pahat tunggal (tool post) yang

tersedia di mesin, panjang ujung pahat dari tool post sekitar 10 sampai dengan

15 mm, sudut masuk Xr = 93°.

g. Data untuk elemen dasar:

• untuk pahat HSS : v = 34 m/menit; f = 0,1 mm/put., a = 2 mm.

• untuk pahat karbida : v = 170 m/menit; f = 0,1 mm/put., a = 2 mm.

h. Bahan benda kerja telah disiapkan (panjang bahan sudah sesuai dengan

gambar), kedua permukaan telah dihaluskan.

i. Perhitungan elemen dasar berdasarkan rumus 6.2 – 6.5 dan gambar rencana

jalannya pahat sebagai berikut (perhitungan dilakukan dengan software

spreadshheet):

Keterangan:

1) Benda kerja dicekam pada Bagian II, sehingga bagian yang menonjol sekitar

50 mm.

2) Penyayatan dilakukan 2 kali dengan kedalaman potong a1 = 2 mm dan a2 =

2 mm. Pemotongan pertama sebagai pemotongan pengasaran (roughing) dan

pemotongan kedua sebagai pemotongan finishing.


Gambar .20 Gambar rencana pencekaman, penyayatan, dan lintasan pahat


3) Panjang pemotongan total adalah panjang benda kerja yang dipotong ditambah

panjang awalan (sekitar 5 mm) dan panjang lintasan keluar pahat (sama dengan

kedalaman potong). Gerakan pahat dijelaskan seperti Gambar .21.

a) Gerakan pahat dari titik 4 ke titik 1 adalah gerak maju dengan cepat (rapid)

b) Gerakan pahat dari titik 1 ke titik 2 adalah gerakan penyayatan dengan

f = 0,1 mm/putaran

c) Gerakan pahat dari titik 2 ke titik 3 adalah gerakan penyayatan dengan

f = 0,1 mm/putaran

d) Gerakan pahat dari titik 3 ke titik 4 adalah gerakan cepat (dikerjakan dengan

memutar eretan memanjang).

Setelah rencana jalannya pahat tersebut di atas kemudian dilakukan perhitungan

elemen dasar pemesinannya. Hasil perhitungan dapat dilihat pada Tabel .4.

a. Perhitungan Elemen Dasar Proses Bubut (untuk Pahat HSS)

v = 34 mm/menit

f = 0,1 mm/putaran

a = 4mm

a1 = 2mm

a2 = 2mm

a3 = . . . mm

d0 = 34 mm

dm1 = 30 mm

dm2 = 26 mm

lt = 42 mm

Proses n (rpm) vf (mm/menit) tc (menit) Z (cm3/menit)

Bubut rata a1 338,38 33,84 1,24 6,80

Bubut rata a2 386,72 38,67 1,09 6,80


Gambar .21 Gambar rencana gerakan dan lintasan pahat


b. Perhitungan Elemen Dasar Proses Bubut (untuk Pahat Karbida P10)

v = 170 mm/menit

f = 0,1 mm/putaran

a = 4mm

a1 = 2mm

a2 = 2mm

a3 = . . . mm

d0 = 34 mm

dm1 = 30 mm

dm2 = 26 mm

lt = 42 mm

Tabel .4 Hasil Perhitungan Elemen Dasar Pemesinan Bagian I

Proses n (rpm) vf (mm/menit) tc (menit) Z (cm3/menit)

Bubut rata a1 1.691,88 169,19 0,25 34,00

Bubut rata a2 1.933,58 193,36 0,22 34,00

Bagian II:

Benda kerja dibalik, sehingga bagian I menjadi bagian yang dicekam seperti

terlihat pada Gambar .22. Lintasan pahat sama dengan lintasan pahat pada

Gambar .21 hanya panjang penyayatannya berbeda, yaitu (50 + 5 + 2) mm.



Gambar .22 Gambar rencana pencekaman, penyayatan, dan lintasan pahat


Hasil perhitungan elemen dasar pemesinan dapat dilihat pada Tabel .5 berikut ini.

Perhitungan elemen dasar proses bubut (untuk pahat HSS)

v = 34 mm/menit

f = 0,1 mm/putaran

a = 2mm

a1 = . . . mm

a2 = . . . mm

a3 = 2mm

d0 = 34 mm

dm1 = 30 mm

dm2 = . . . mm

lt = 57 mm

Proses n (rpm) vf (mm/menit) tc (menit) Z (cm3/menit)

Bubut rata a3 338,38 33,84 1,68 6,80

Perhitungan elemen dasar proses bubut (untuk pahat Karbida)

v = 170 mm/menit

f = 0,1 mm/putaran

a = 2mm

a1 = . . . mm

a2 = . . . mm

a3 = 2mm

d0 = 34 mm

dm1 = 30 mm

dm2 = . . . mm

lt = 57 mm

Tabel 6.5 Hasil Perhitungan Eleman Dasar Pemesinan Bagian II

Proses n (rpm) vf (mm/menit) tc (menit) Z (cm3/menit)

Bubut rata a3 1.691,88 169,19 0,34 34,00

Catatan :

1) Pada praktiknya parameter pemotongan terutama putaran spindel (n) dipilih dari putaran spindel yang tersedia di mesin bubut tidak seperti hasil perhitungan dengan rumus di atas. Kalau putaran spindel hasil perhitungan tidak ada yang sama (hampir sama) dengan tabel putaran spindel di mesin sebaiknya dipilih putaran spindel di bawah putaran spindel hasil perhitungan.

2) Apabila parameter pemotongan n diubah, maka elemen dasar pemesinan yang lain juga berubah.


3) Waktu yang diperlukan untuk membuat benda kerja jadi bukanlah jumlah waktu pemotongan (tc) keseluruhan dari tabel perhitungan di atas (Tabel 6.4 dan Tabel 6.5). Waktu pembuatan benda kerja harus ditambah waktu nonproduktif yaitu:

a) waktu penyiapan mesin/pahat

b) waktu penyiapan bahan benda kerja (dengan mesin gergaji, dan mesin bubut yang disetel khusus untuk membuat bahan benda kerja)

c) waktu pemasangan benda kerja

d) waktu pengecekan ukuran benda kerja

e) waktu yang diperlukan pahat untuk mundur (retract)

f) waktu yang diperlukan untuk melepas benda kerja

g) waktu yang diperlukan untuk mengantarkan benda kerja (dari bagian penyiapan benda kerja ke mesin).

4) Tidak ada rumus baku untuk menentukan waktu nonproduktif. Waktu nonproduktif diperoleh dengan mencatat waktu yang diperlukan untuk masing-masing waktu nonproduktif tersebut.

5) Untuk benda kerja tunggal waktu penyelesaian benda kerja lebih lama dari pada pembuatan massal (waktu rata-rata per produk), karena waktu penyiapan mesin tidak dilakukan untuk setiap benda kerja yang dikerjakan.

6) Untuk proses bubut rata dalam, perhitungan elemen dasar pada prinsipnya sama dengan bubut luar, tetapi pada bubut dalam diameter awal (d0) lebih kecil dari pada diameter akhir (dm).

7) Apabila diinginkan pencekaman hanya sekali tanpa membalik benda kerja, maka bahan benda kerja dibuat lebih panjang sekitar 30 mm. Akan tetapi hal tersebut akan menyebabkan pemborosan bahan benda kerja jikamembuat benda kerja dalam jumlah banyak.

8) Apabila benda kerja dikerjakan dengan dua senter (setting seperti Gambar .13), maka benda kerja harus diberi lubang senter pada kedua ujungnya. Dengan demikian waktu ditambah dengan waktu pembuatan lubang senter.

9) Pahat karbida lebih produktif dari pada pahat HSS.

6. Perencanaan Proses Membubut Tirus

Benda kerja berbentuk tirus (taper) dihasilkan pada proses bubut apabila gerakan pahat membentuk sudut tertentu terhadap sumbu benda kerja. Cara membuat benda tirus ada beberapa macam, seperti dijelaskan berikut ini.

a. Dengan memiringkan eretan atas pada sudut tertentu (Gambar .23), gerakan pahat (pemakanan) dilakukan secara manual (memutar handle eretan atas).

b. Pengerjaan dengan cara ini memakan waktu cukup lama, karena gerakan pahat kembali relatif lama (ulir eretan atas kisarnya lebih kecil dari pada ulir transportir).

c. Dengan alat bantu tirus (taper attachment), pembuatan tirus dengan alat ini adalah untuk benda yang memiliki sudut tirus relatif kecil (sudut sampai dengan ±9°). Pembuatan tirus lebih cepat karena gerakan pemakanan (feeding) bisa dilakukan otomatis (Gambar .24).

d. Dengan menggeser kepala lepas (tail stock), dengan cara ini proses pembubutan tirus dilakukan sama dengan proses membubut lurus dengan bantuan dua senter. Benda kerja tirus terbentuk karena sumbu kepala lepas tidak sejajar dengan sumbu kepala tetap (Gambar .25). Untuk cara ini sebaiknya hanya untuk sudut tirus yang sangat kecil, karena apabila sudut tirus besar bisa merusak senter jalan yang dipasang pada kepala lepas.


Gambar .24 Proses membubut tirus luar dengan bantuan alat bantu tirus (taper attachment)


Gambar .23 Proses membubut tirus luar dan tirus dalam dengan memiringkan eretan atas, gerakan penyayatan ditunjukkan oleh anak panah


Gambar .26 Gambar benda kerja tirus dan notasi yang digunakan

Perhitungan pergeseran kepala lepas pada pembubutan tirus dijelaskan dengan gambar dan rumus berikut. Pergeseran kepala lepas (x) pada Gambar .26 di atas dapat dihitung dengan rumus:

x = 2

D d

l

-?L . . . (6.6)

Membubut Tirus

TIGA CARA MEMBUBUT TIRUS 
1. Memiringkan eretan atas.
gerakan pahat (pemakanan) dilakukan secara manual




2. Dengan alat bantu tirus (taper attachment),
- untuk benda yang memiliki sudut tirus relatif kecil 
- Pembuatan tirus lebih cepat 
- Gerakan pemakanan (feeding) dilakukan secara otomatis


3. Dengan menggeser kepala lepas (tail stock)
- proses pembubutan tirus dengan bantuan dua senter. 
- sumbu kepala lepas tidak sejajar dengan sumbu kepala tetap 



Pengertian Proyeksi


Kata proyeksi secara umum berarti bayangan. Gambar proyeksi berarti gambar bayangan suatu benda yang berasal dari benda nyata atau imajiner yang dituangkan dalam bidang gambar menurut cara-cara tertentu. Cara-cara tersebut berkenaan dengan arah garis pemroyeksi yang meliputi sejajar (paralel) dan memusat (sentral). Arah yang sejajar terdiri atas sejajar tegak lurus terhadap bidang gambar dan sejajar akan tetapi miring terhadap bidang gambar.
pandangan-sejajar-tegak1Berdasarkan arah garis pemroyeksi tersebut dikenal berbagai jenis gambar proyeksi. Garis pemroyeksi yang sejajar tegak lurus terhadap bidang gambar menghasilkan gambar proyeksi orthogonal yang terdiri dari proyeksi Eropa, proyeksi Amerika, dan proyeksi Aksonometri. Garis pemroyeksi yang sejajar tetapi miring terhadap bidang gambar menghasilkan proyeksi Oblik (miring). Sementara garis pemroyeksi yang memusat (sentral) terhadap bidang gambar menghasilkan gambar perspektif.
pandangan-sejajar-tegak1
Gb.1. Contoh  pandangan sejajar tegak
Secara umum berbagai jenis gambar proyeksi dan perspektif tersebut difungsikan sebagai sarana komunikasi dalam bentuk pictorial. Benda kongkret yang ada, misalnya meja atau kursi, digambarkan sedemikian rupa sehingga dipahami oleh orang lain. Benda imajiner (khayalan penggambar), misalnya meja atau kursi yang sebelumnya tidak ada digambarkan sedemikian rupa sehingga dipahami oleh orang lain misalnya tukang atau pemesan. Gambar proyeksi dan perspektif lebih banyak menampilkan benda imajiner, oleh karena itu sangat bermanfaat dalam bidang perencanaan.
1. Proyeksi Ortogonal (Eropa)
Penampilan gambar proyeksi Eropa relative sederhana dibandingkan dengan yang lain. Gambar ini menampilkan pandangan atas, depan (muka), dan samping. Oleh karena itu proyeksi Eropa sangat tepat digunakan untuk kepentingan perancangan mebel atau desain produk.
Sistem gambar proyeksi Eropa dihasilkan dari pemroyeksian pada ruang atau sudut pertama (first angel). Oleh karena itu proyeksi Eropa sering disebut proyeksi “Kuadran Pertama” atau “Kuadran I”. Ruang atau sudut penampilan tersebut berbentuk tiga dimensi, yang terdiri atas 3 bidang, yakni bidang I, II, dan III. Bidang I berfungsi untuk menampilkan bayangan benada tampak dari atas, bidang II untuk bayangan benda tampak depan, dan bidang III untuk bayangan benda tampak dari samping kiri. Oleh karena itu proyeksi Eropa sering dikelompokkan dalam proyeksi multiview (tampak ganda).
Jika diperhatikan sistem proyeksi Eropa ini menempatkan posisi benda/obyek yang digambar berada di antara titik pengamat (proyektor) dan proyeksi benda. Jika diurutkan maka posisi tersebut adalah pengamat, objek, dan gambar proyeksi. Posisi pengamat terhadap bidang gambar adalah tegak lurus. Di samping itu, masing-masing garis pemroyeksi yang merupakan hubungan dari titik pengamat dan benda sehingga menghasilkan proyeksi tersebut adalah sejajar sesamanya.
Ruang / sudut yang berbentuk tiga dimensi ini diubah sedemikian rupa menjadi dua dimensi. Dengan kata lain diubah menjadi bidang datar sehingga dapat dituangkan ke dalam bidang atau kertas gambar. Perubahan sudut / ruang tersebut dapat dilihat dalam gambar berikut:
ruang-proyeksi-eropa
Gb.2. Konstruksi ruang dalam proyeksi Eropa
pemutaran1
pemutaran2
Gb.3. Ruang dalam proyeksi Eropa yang dibentangkan menjadi bidang datar.
sumbu-proyeksi
Gb 4. Sumbu proyeksi Eropa yang terbentuk karena rebahan ruang.
proyeksi-titik1
Gb. 5. Contoh cara memproyeksikan sebuah titik.
proyeksi-kubus
Gb.6. Contoh benda berupa kubus yang diproyeksikan dengan cara Eropa.
2. Proyeksi Aksonometri
Proyeksi Aksonometri tergolong jenis proyeksi sejajar (paralel) dan juga tegak (ortogonal). Perbedaannya dengan proyeksi Eropa terutama adalah dalam penampilan tampak. Dalam proyeksi Aksonometri diupayakan untuk penampilan tampak atas, depan, dan samping dalam satu kesatuan gambar tidak seperti dalam proyeksi Eropa yang terpisah oleh bidang-bidang. Gambar proyeksi Aksonometri menampilkan objek gambar baik yang kongkret maupun imajiner ke dalam bayangan tiga dimensi, oleh karena itu aksonometri tergolong jenis proyeksi piktorial.
Jenis proyeksi Aksonometri dikelompokkan menjadi tiga, yaitu:
  1. Proyeksi Isometri
Proyeksi isometri adalah jenis proyeksi aksonometri berpenampilan tiga dimensi atau piktorial dengan besaran sudut masing-masing 120 0, dan perbadingan masing-masing ukuran tinggi, panjang, dan dalam yaitu 1:1:1. Besar sudut sumbu 1200 dapat digunakan alternatif dibuat sudut 300 terhadap horisontal (baik sudut kanan maupun kiri)
isometri1Gb.7. Tampilan gambar isometri.
b. Proyeksi Dimetri
Penggunaan isometri seringkali menyebabkan distorsi pada gambar yang ditampilkan, dan garis-garis yang berimpit. Kelemahan ini dapat ditanggulangi dengan proyeksi dimetri. Dimetri artinya ada dua jurusan sumbu yang sama panjang. Pada dimetri perbandingan yang sama terdapat pada dimensi tinggi dan panjang. Perbandingan yang lazim digunakan yaitu 2:2:1 atau 3:3:1 Perbandingan ini diikuti dengan konsekuensi pada sudut objek yang digambar terhadap garis horizon yaitu 41,4 derajat untuk sudut sebelah kanan dan 7,2 derajat untuk sudut sebelah kiri.
dimetri
Gb. 8. Tampilan gambar dimetri.
c. Trimetri
Penggunaan proyeksi dimetri ternyata dirasakan banyak terjadi distorsi, oleh karena itu ukuran kedua rusuk/sumbu salah satunya (rusuk panjang) perlu dipendekkan, sehingga perbandingan yang sering digunakan adalah 10:9:5 atau 6:5:4.

trimetri
Gb. 9. Tampilan gambar Trimetri.
3. Gambar Perspektif
Dalam penglihatan kita sehari-hari, benda-benda yang letaknya lebih dekat dengan mata terlihat lebih besar dan benda-benda yang terletak lebih jauh dengan mata terlihat lebih kecil. Semakin jauh letak benda dari mata kita, benda itu akan terlihat semakin kecil hingga akhirnya hanya tampak sebagai titik saja. Demikian juga dua benda atau lebih yang letaknya sejajar dan membujur menjauhi kita, semakin jauh dari mata, keduanya akan terlihat semakin berdekatan hingga akhirnya saling berimpit dan akan menjadi satu titik.
konstruksi-1
Gb. 9. Konstruksi gambar perspektif
Seperti halnya dalam proyeksi Eropa maka dalam gambar perspektifpun diupayakan agar bidang-bidang yang semula saling berpotongan harus dibentangkan menjadi bidang datar. Pembentangan tersebut dapat dilihat seperti pada gambar di bawah ini. Bidang mata dibentangkan ke atas menjadi sejajar dengan bidang tafrir, begitu juga dengan bidang tanah yang dibentangkan ke bawah menjadi sejajar dengan bidang tafrir.
bukaan-perspektif1
Gb.10. Bidang hasil pembentangan bidang mata dan bidang tanah menjadi sejajar bidang tafrir.
Selanjutnya, untuk kepentingan menggambar perspektif bidang itu menjadi disederhanakan seperti di bawah inisumbu-perspektif3
Gb.11. Posisi mata, distansi,  tinggi tafrir, garis horizon, dan garis tanah.
bukaan-perspektif2
Gb.12. Contoh sebuah titik yang diproyeksikan dengan gambar perspektif
1. Perspektif satu titik lenyap (one point perspective)
Sistem perespektif ini digunakan untuk menggambar obyek (benda) yang terletak relatif dekat dengan mata. Karena letak obyek yang cukup dekat, akibatnya mata memiliki sudut pandang yang sempit, sehingga garis-garis batas benda akan menuju satu titik lenyap saja, kecuali bila sejajar dengan horizon dan tegak lurus terhadapnya. Gambar yang demikian sering disebut dengan paralel perspective sebab banyak menggunakan garis-garis bantu yang sejajar horizon dan vertikal. Penerapan gambar ini banyak digunakan pada gambar rancang bangun (desain) interior.
2. Perspektif dua titik lenyap (two point perspective)
Sistem gambar ini digunakan untuk menggambarkan benda-benda yang letaknya relatif jauh dan letaknya tidak sejajar (serong) terhadap mata pengamat. Karena posisi pengamat jauh dengan obyek maka sudut pandang mata melebar, akibatnya garis-garis batas benda akan menuju titik lenyap sebelah kiri dan kanan. Gambar ini banyak digunakan untuk desain eksterior.
3. Perspektif tiga titik lenyap (three point perspective)
Gambar perspektif ini muncul akibat benda/obyek yang diamati jauh di bawah atau ke atas horizon. Oleh karenanya sudut pandang mata melebar ke segala arah. Perspektif ini banyak digunakan untuk menggambar arsitektur bangunan yang serba tinggi.
Jika kita mengamati gambar di atas, titik A pada bidang tafrir yang merupakan titik pertemuan garis mata dengan kedudukan titik tersebut yang ditarik lurus ke garis tanah kemudian diteruskan ke P sebagai titik hilang. Memproyeksikan titik sebenarnya dapat melalui 4 cara seperti di bawah ini:
Cara pertama
perspektif-titik1
Cara kedua
perspektif-titik2
Cara ketiga
perspektif-titik3
Cara keempat
sumbu-perspektif22
perspektif-titik4
Gb.13. Proyeksi sebuah garis yang tegak lurus dengan garis tanah.
Untuk benda-benda yang memiliki dimensi tinggi perhatikan gambar di bawah ini. Garis ketinggian benda diukur dari garis tanah tepat pada perpanjangan garis benda di garis tanah. Ukuran garis tinggi benda diukur dengan ukuran sebenarnya
perspektif-titik6

Toleransi Ukuran Pengerjaan Bubut


1. Toleransi dan suaian
  1. Toleransi
Toleransi adalah dua batas penyimpangan ukuran yang diijinkan. Misalnya, sebuah elemen diberi ukuran  maka dapat dijelaskan sebagai berikut:
•  adalah ukuran dasar
•  adalah nilai toleransi yang diberikan
Toleransi pada dasarnya dibedakan menjadi tiga macam, yakni toleransi ukuran, toleransi geometrik, dan konfigurasi kekasaran permukaan.
1.1  Toleransi ukuran
Definisi dari toleransi ukuran adalah dua batas penyimpangan yang diijinkan pada setiap ukuran elemen.
Toleransi memegang peranan yang vital pada proses produksi dikarenakan sangat sulitnya membuat suatu alat atau benda sesuai dengan ukuran yang tepat, karena menyangkut ketelitian dalam proses pengerjaannya.
Selanjutnya toleransi ukuran dibedakan lagi menjadi:
1.1.1        Toleransi Standar (Toleransi Internasional/IT)
Besarnya toleransi ditentukan oleh ISO /R286 (sistem ISO untuk limit dan suaian) agar sesuai dengan persyaratan fungsional dan untuk keseragaman.
ISO menetapkan 18 toleransi standar, yakni mulai dari IT 01, IT 0, IT 1, IT 2, sampai dengan IT 16.
Sedangkan untuk dasar satuan toleransi dari kualitas 01 – 1, harga toleransi standarnya dapat dihitung dengan rumus pada tabel berikut:
IT 01IT 0IT 1
Nilai dalam µm untuk D dalam µm0,3 + 0,008 D0,5 + 0,012 D0,8 + 0,0 20 D
Secara garis besar, gambaran secara umum dari hubungan antara pengelompokan kualitas toleransi ini dengan proses pengerjaannya adalah sbb.
  1. Kualitas 1 – 4 adalah untuk pengerjaan yang sangat teliti.  Misalnya pembuatan alat ukur, instrumen optik, dll.
  2. Kualitas 5 – 11 untuk proses pengerjaan dengan permesinan biasa, termasuk untuk komponen-komponen yang mampu tukar.
  3. Kualitas 12 – 16 untuk proses pengerjaan yang kasar, seperti pengecoran, penempaan, pengerolan, dsb.
1.1.2        Toleransi Umum dan Toleransi Khusus
  1. Toleransi Umum
Toleransi umum diberikan untuk ukuran yang tidak memerlukan ketelitian atau bukan merupakan bagian dari benda berpasangan (suaian).
Nilai toleransi umum selalu memilki batas penyimpangan atas dan batas penyimpangan bawah yang sama.  Besarnya toleransi ini ditentukan oleh tingkat kualitas (kekasaran permukaan) dan ukuran dasar.
  1. Toleransi Khusus
Toleransi khusus merupakan suatu toleransi yang nilainya di luar toleransi umum dan suaian.  Nilai toleransinya lebih kecil daripada nilai toleransi umum, namun lebih besar daripada nilai toleransi suaian.
1.1.3        Toleransi suaian
Suaian adalah suatu istilah untuk menggambarkan tingkat kekekatan atau kelonggaran yang mungkin dihasilkan dari penggunaan kelegaan atau toleransi tertentu pada elemen mesin yang berpasangan.
Ada empat macam suaian pada elemen mesin, yakni:
  1. Suaian longgar (clearance fit)
Suaian ini selalu menghasilkan kelonggaran (celah bebas) dengan daerah toleransi lubang selalu terletak di atas daerah toleransi poros.
  1. Suaian sesak (interference fit)
Suaian yang selalu menghasilkan kesesakan, dengan daerah toleransi lubang selalu terletak di bawah daerah toleransi poros.
  1. Suaian pas (transition fit)
Suaian ini dapat menghasilkan celah bebas atau interferensi, namun poros harus dipaksakan masuk ke dalam lubang dengan kelegaan negatif.
  1. Suaian garis
Batas – batas ukuran ditentukan sedemikian sehingga celah bebas atau kontak antar permukaan akan terjadi apabila elemen mesin yang berpasangan dirakit.
Berikut ini dicantumkan beberapa istilah toleransi untuk elemen tunggal dan suaian yang seringkali dipakai :
  1. Ukuran dasar
Ukuran dasar atau ukuran nominal adalah ukuran pokok yanag ditulis sebelum disertai angka-angka batas penyimpangan yang diijnkan.
  1. Penyimpangan atas
Penyimpangan atas adalah penyimpangan ke arah atas ukuran maksimum.
  1. Penyimpangan bawah
Penyimpangan bawah adalah penyimpangan ke arah bawah penyimpangan minimum.
  1. Ukuran maksimum
Ukuran maksimum adalah ukuran terbesar yang masih diperbolehkan.  Besarnya ukuran maksimum = ukuran dasar + penyimpangan atas.
  1. Ukuran minimum
Ukuran minimum adalah ukuran terkecil yang masih diperbolehkan.  Besarnya ukuran minimum = ukuran dasar + penyimpangan bawah.
  1. Garis nol
Garis nol adalah garis dasar atau garis dengan penyimpangan nol.
  1. Ukuran sesungguhnya
Ukuran sesungguhnya adalah ukuran jadi atau ukuran yang didapat setelah benda selesai dibuat, yang dapat diketahui dengan menggunakan alat ukur.
  1. Kelonggaran (Clearance)
Kelonggaran adalah selsih kelonggaran antara luna gdengan poros dimana ukuran lubang lebih besar daripada ukuran poros.
  • Kelonggaran maksimum adalah seliisih antara lubang terbesar dengan poros  terkecil dalam suatu suaian longgar.
  • Kelonggaran minimum adalah selisih ukuran lungan terkecil dengan poros terbesar dalam suatu suaian longgar.
  1. Kesesakan (Interference)
Kesesakan adalah suatu nilai selisih ukuran antara lubang dengan poros, dimana ukuran poros lebih besar daripada ukuran lubang.
  • Kesesakan maksimum adalah selisih ukuran antara lubang terkecil dengan poros terbesar pada suaian sesak.
  • Kesesakan minimum adalah selisih ukuran antara lubang terbesar dengan poros terkecil pada suaian sesak.
Contoh pemberian toleransi pada sebuah lubang dan poros:
a. 30H7                                        b.  40g6
Keterangan:
  1. Suatu lubang denganukuran dasar 30 mm, posisi daerah toleransinya H, dan kualitasnya 7
  2. Suatu poros dengan ukuran dasar 40 mm, posisi daerah toleransinya g, dan kualitasnya 6
1.2  Toleransi Geometrik
Toleransi geometrik adalah toleransi yang membatasi penyimpangan bentuk, posisi tempat, dan penyimpangan putar terhadap suatu elemen geometris.  Toleransi geometrik pada dasarnya memberikan kesempatan untuk memperlebar persyaratan dari toleransi ukuran. Pemakaian toleransi geometrik hanya dianjurkan apabila memang perlu untuk meyakinkan ketepatan komponen menurut fungsinya.
Sebuah toleransi geometrik dari suatu elemen menentukan daerah di mana elemen tersebut harus berada. Maka, sesuai dengan sifat dari daerah yang akan diberi toleransi dan cara memberi ukuran, daerah toleransi dikelompokkan menjadi berikut.
  1. Luas dalam lingkaran (selanjutnya dilambangkan dengan #1)
  2. Luas antara dua lingkaran sepusat (selanjutnya dilambangkan dengan #2)
  3. Luas antara dua garis yang berjarak sama, atau dua garis lurus sejajar (selanjutnya dilambangkan dengan #3)
  4. Ruang dalam bola (selanjutnya dilambangkan dengan #4)
  5. Ruang dalam silinder (selanjutnya dilambangkan dengan #5)
  6. Ruang antara dua silinder bersumbu sama (selanjutnya dilambangkan dengan #6)
  7. Ruang antara dua permukaan berjarak sama atau dua bidang sejajar (selanjutnya dilambangkan dengan #7)
  8. Ruang dalam sebuah kubus (selanjutnya dilambangkan dengan #8)
Berikut ini gambaran mengenai hubungan antara sifat yang diberi  toleransi dan daerah toleransi diberikan dalam suatu tabel
Daerah Toleransi#1#2#3#4#5#6#7#8
Sifat-sifat yang diberi toleransiSimbol
Kelurusan
Kedataran
Kebulatan
Kesilindrisan
Profil garis
Profil permukaan
Kesejajaran
Ketegaklurusan
Ketirusan
Posisi
Konsentrisitas dan koaksialitas
Kesimetrisan
Putar tunggal
Putar total
Hubungan antara toleransi geometrik dengan toleransi ukuran ada dua macam dibedakan menurut :
  1. Menurut Prinsip Ketidakbergantungan
Definisi Prinsip Ketidakbergantungan adalah,“Tiap persyaratan yang diperinci dalam gambar, seperti misalnya toleransi ukuran dan toleransi bentuk atau posisi harus ditentukan secaa bebas tanpa menghubungkan pada ukuran, toleransi atau sifat manapun kecuali ditentukan oleh suatu hubungan khusus.”
Maka bila tidak ditemukan adanya hubungan antara ukuran dan toleransi bentuk atau posisi, toleransi bentuk atau posisi itu dianggap tidak memiliki hubungan.
  1. Menurut Prinsip Bahan Maksimum
Definisi Prinsip Bahan Maksimum adalah,”Pemberian toleransi yang memperhitungkan ketergantungan timbal balik antara toleransi ukuran dengan toleransi bentuk atau posisi serta adanya tambahan harga toleransi dari bentuk atau posisi pada bagian tertentu yang menyimpang asalkan tidak melanggar batas-batas maksimum dan minimumnya”
Prinsip bahan maksimum mengsumsikan bahwa terdapat hubungan timbal balik antara toleransi ukuran dengan toleransi bentuk atau posisi.  Kondisi bahan maksimum pada sebuah poros adalah ukuran batas terbesar dari poros tersebut.
1.3  Konfigurasi kekasaran permukaan
Konfigurasi permukaan yang mencakup antara lain kekasaran permukaan dan bekas pengerjaan (tekstur), memegaang peranan penting dalam perencanaan suatu elemen mesin, yakni berhubungan dengan gesekan, keausan, pelumasan, tahanan, kelelahan, kerekatan, suaian, dan sebagainya.
Nilai kekasaran rata-rata aritmetik (Ra) telah diklasifikasikan oleh ISO menjadi 12 tingkat kekasaran, daari N1 sampai dengan N12
Kekasaran (Ra
(µm)
Tingkat KekasaranPanjang Sampel 
(µm)
50 
25
N12 
N11
8
12.5 
6.3
N10 
N9
2.5
3.2 
1.6
0.8
0.4
N8 
N7
N6
N5
0.8
0.2 
0.1
0.05
N4 
N3
N2
0.25
0.025N10.08
  1. 2. Jenis jangka sorong dan mikrometer skrup serta aplikasinya
  1. Jangka Sorong (caliper)
Jangka sorong secara khusus menggunakan gerak geser yang presisius untuk pengukuran bagian dalam, bagian luar, dan demi kedalaman atau tingkatan pengukuran.  Kekhususan dari kemampuan geser jangka sorong dapat digunakan untuk mengukur kedalaman dan roda gigi serta mesin yang sedang bergerak.
Beberapa jenis jangka sorong adalah sebagai berikut:
  1. Center Measuring Calipers
    Jangka sorong dengan bentuk kerucut dengan ‘jaws’ yang didesain untuk mengukur jarak di antara pusat dua buah lubang atau rongga.
  1. Gear Tooth Calipers
    Jangka sorong dengan  batang yang dapat diatur didesain untuk mengukur ketebalan dari gigi roda pada batas ‘pitch’.  Batang yang dapat diatur ini menetapkan kedalaman pengukuran pada batas ‘pitch’ atau pada batang tambahan.
  1. Machine Travel Calipers
Sistem pengukuran yang didesain untuk mengukur perubahan posisi dari machine bed. Kepala mikrometer, indikator, jangka sorong terspesialisasi dan pengukuran OEM lainnya digunakan untuk mengindikasikan perjalanan mesin.  Jangka sorong ini khususnya digunakan untuk mengukur mesin yang telah terpasang atau berwujud  produk seperti alat permesinan, mikroskop, dan instrumen lain yang memerlukan dimensi atau kontrol yang presisi.
  1. Nib Jaws Calipers
Jangka sorong ini memudahkan pengukuran segi bagian dalam (inside features), segi bagian luar (outside features), lekukan, lubang atau celah, dan derajat.  Dengan membandingkan dengan jangka sorong lainnya, maka jangka sorong ini dapat dengan mudah dan akurat ditempatkan pada bagian sisi atau celah.
  1. Pocket / Rolling Mill Calipers
    Jangka sorong yang kecil dan biasa digunakan untuk pengukuran dengan tingkat ketelitian yang rendah dan biasanya secara sederhana digunakan untuk mengukur alat yang tak rata untuk demi kecepatan pengukuran barang di lingkungan produksi.
  2. Electronic Calipers
Ciri-ciri:
  • Lightweight, ergonomic design
  • Large easy-to-read LCD 32 in. high
  • Inch/Millimeter conversion
  • Zero at any position
  • Automatic shut-off after 5 minutes of nonuse
  • Last measuring position retained when shut off
  • Easy access to the single
  • Hardened stainless steel body for long life
  • Integrated depth rod on all sizes
  • Fine adjustment thumb wheel
  • Lock screw to hold the slide in position
  • Resolution is 0.0005 in. (0.01mm)
  • Linear accuracy meets DIN862
  1. Mikrometer sekrup (micrometer)
Mikrometer adalah alat ukur yang dapat melihat dan mengukur benda dengan satuan ukur yang memiliki 0.01 mm.
Satu mikrometer adalah secara luas digunakan alat di dalam teknik mesin electro untuk mengukur ketebalan secara tepat dari blok-blok, luar dan garis tengah dari kerendahan dan batang-batang slot. Mikrometer ini banyak dipakai dalam metrology, studi dari pengukuran,
Mikrometer memiliki 3 jenis umum pengelompokan yang didasarkan pada aplikasi berikut :
  • Mikrometer Luar
Mikrometer luar digunakan untuk ukuran memasang kawat, lapisan-lapisan, blok-blok dan batang-batang
  • Mikrometer dalam
Mikrometer dalam digunakan untuk menguukur garis tengah dari lubang suatu benda
  • Mikrometer kedalaman
Mikrometer kedalaman digunakan untuk mengukur kerendahan dari langkah-langkah dan slot-slot
  • Mikrometer lubang
Mikrometer lubang secara khusus memliki tig kepala landasan yang digunakan untuk mengukur diametr dalam.
  • Mikrometer pipa
Mikrometer pipa untuk mengukur ketebalan dari pipa
Berikut contoh beberapa jenis mikrometer.
  1. Braille-Reading Micrometer
Mikrometer yang cukup popular dimana dapat digunakan oleh orang-orang yang tunanetra karena memiliki sistem penunjukan skala berupa huruf Braille.  Mikrometer ini tidak dijual bebas dan hanya di gunakan dalam dunia pedidikan demi perluasan wawasan kaum tunanetra.
3. Ukuran-ukuran blok ukur
Blok ukur yang biasanya ada di Laboratorium CAD CAM berjumlah 38 dan ukuran-ukurannya adalah sbb. {semua ukuran dalam milimeter (mm)}
1, 1.005, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.